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Abstract

The instability of a viscoelastic fluid saturating a horizontal porous layer heated from below is studied theoretically with a dynamical
system approach. The viscoelastic character of the flow is taken into account by a modified Darcy’s law. The conservation equations of
mass, momentum and energy are approximated by a reduced-order system of nonlinear, ordinary differential equations, which is similar
to the well-known system derived by Lorenz to describe atmospheric convection. Equilibrium points and their stability are expressed as
functions of a dimensionless heat capacity and of two relaxation parameters. Qualitative expressions of the Nusselt number when the
system is out of equilibrium are also derived.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of fluid currents driven by buoyancy forces
induced by a temperature gradient has been a classical
problem of fluid mechanics for more than one century
[1–5]. One interesting variation of this problem was studied
by Horton and Rogers [6] and independently by Lapwood
[7], who addressed the Rayleigh–Bénard convection in
porous media. Beyond its undoubted scientific appeal,
buoyancy-driven convection in porous media is relevant
to several engineering applications, such as solar energy
storage systems, geothermal reservoirs, passive cooling of
nuclear reactors, pollutant transport in underground
waters, soil decontamination, storage of chemical or agri-
cultural products, as well as many others. Extensive
reviews on this subject can be found in the books by Nield
and Bejan [8] and by Kaviany [9].
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doi:10.1016/j.ijheatmasstransfer.2006.04.006

* Corresponding author.
E-mail address: v.bertola@ed.ac.uk (V. Bertola).
One interesting case of convection in porous media
arises when the fluid is viscoelastic. As a matter of fact,
viscoelastic flows in porous media have been considered
already several years ago [10,11], whereas the study of
heat transfer in viscoelastic fluids is relatively more
recent [12,13], also because it often leads to problems
that can be solved only with the aid of numerical sim-
ulations.

Recently, Kim et al. [14] conducted a theoretical analysis
of thermal instability driven by buoyancy forces in an ini-
tially quiescent, horizontal porous layer saturated by visco-
elastic fluids, neglecting the difference between the heat
capacity of the fluid and that of the porous matrix. They
used the classic linear stability theory to find the critical
condition for the onset of convective motion, and the
amplitude expansion method to determine the magnitude
of fluctuations (and hence the Nusselt number) after depar-
ture from equilibrium. A similar linear stability approach
was used to investigate the Rayleigh–Bénard problem with
non-uniform temperature gradient in a high porosity med-
ium [15].
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Nomenclature

A parameter in Eq. (49)
a wavenumber
B parameter in Eq. (49)
b parameter of Lorenz’s model
C dimensionless heat capacity, C ¼ qc

uqcþð1�uÞqM cM

c heat capacity of the fluid
D dimensionless characteristic time,

D ¼ sa
h2 p2ð1þ a2Þ

g gravity acceleration
h porous layer thickness
J function of characteristic times and heat capac-

ity
k thermal conductivity of the fluid
Nu Nusselt number, Nu ¼ � h

dT
oT
oy

���
y¼0

P pressure
R Rayleigh–Darcy number
r normalized Rayleigh–Darcy parameter
T temperature
t time
v velocity
X dimensionless rate of convective overturning
x horizontal coordinate

Y dimensionless temperature variation (horizon-
tal)

y vertical coordinate
Z dimensionless temperature variation (vertical)

Greek symbols

a ratio between the overall thermal conductivity
and heat capacity

b isobaric dilatation coefficient
C permeability
g dynamic viscosity
u porosity
k eigenvalue
h temperature deviation from the linear, steady-

state solution
q fluid density
s dimensionless characteristic time
n acceleration coefficient
x dimensionless frequency
w stream function
f parameter

Fig. 1. Schematic description of the problem.
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A well-known alternative approach to the study of
stability is based on the dynamical systems theory, which
provides an elegant and straightforward mathematical for-
malism. Unfortunately, application of this method to most
problems of fluid dynamics, which are described by partial
differential equations, is not immediate, because their
reduction to a dynamical system of ordinary differential
equations implies the introduction of infinite degrees of
freedom. In some cases, however, it turns out that the sys-
tem dynamics is dominated only by a few degrees of free-
dom, which are sufficient to capture the main aspects of
the flow evolution. Therefore, it is exactly in these cases
that the dynamical system approach becomes extremely
useful, for instance, to investigate stability problems.

The best-known example of how the dynamical systems
theory can be applied to fluid dynamics is probably repre-
sented by Saltzman’s approach to the description of atmo-
spheric convection [16], which led Lorentz to formulate his
now-famous equations [17] explaining the unpredictability
of purely deterministic systems. This approach has been
successfully applied to the description of free convection,
heat transfer problems, both for Newtonian [18] and, for
viscoelastic fluids [19,20].

In the present work, the theory of dynamical systems is
used to investigate the thermal instability driven by buoy-
ancy forces in an initially quiescent, horizontal porous
layer saturated by viscoelastic fluids. The problem, which
is schematically described in Fig. 1, is analogous to the
classical problem of thermoconvective instability in simple
fluids, and can be described using the same mathematical
formalism. The partial differential equations of the per-
turbed temperature and velocity fields are reduced to a
nonlinear system of ordinary differential equations by
means of a Galerkin projection, truncated in such a way
as to leave only three degrees of freedom [19]. The stability
analysis reveals that, depending on the thermophysical
properties of the fluid, the onset of the instability may
occur for smaller values of the Rayleigh–Darcy number
than in the case of a Newtonian fluid.

2. Analysis

2.1. Modified Darcy’s law

The momentum equation of fluid flow in porous media
is usually expressed in the form of Darcy’s law [21], which
states that for a Newtonian fluid the volume averaged
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superficial fluid velocity (also known as filtration velocity)
is proportional to the pressure gradient driving the flow:

v ¼ �C
g
rP ð1Þ

where g is the dynamic viscosity of the fluid, and C is a
quantity called permeability. When gravity must be taken
into account, Eq. (1) becomes:

v ¼ �C
g
ðrP � qgÞ ð2Þ

In general, permeability is a tensor which depends on the
porous medium microstructure (shape, size, and orienta-
tion of pores), but in the case of isotropy it reduces to a
scalar; furthermore, when the Reynolds number is small
it is independent of the flow rate and the fluid properties.

Unsteady flows can be described by introducing an iner-
tial term (see the book by Nield and Bejan [8] for a review
on the subject):

nqC
g

ov

ot
þ v ¼ �C

g
ðrP � qgÞ ð3Þ

where n is an acceleration coefficient that depends on the
geometry.

The use of Darcy’s law in viscoelastic flows, however, is
not straightforward, because the pressure drop is non-
linearly related to the filtration velocity, so that the per-
meability would also depend on the relaxation time of
the fluid. Following a well-established approach [22], one
can modify Eq. (3) by including a relaxation term about
the pressure gradient, with a characteristic time s:

nqC
g

ov

ot
þ v ¼ �C

g
1þ s

o

ot

� �
ðrP � qgÞ ð4Þ

This equation implicitly assumes that the fluid has a con-
stant viscosity and a single relaxation time which is the
case, for instance, of an upper convected Maxwell fluid
[23].

In conclusion, the modified Darcy law can be given a
synthetic formulation [19] where two characteristic times
can be identified:

1þ s1
o

ot

� �
v ¼ �C

g
1þ s2

o

ot

� �
ðrP � qgÞ ð5Þ

In particular, s1 is the retardation time due to the action of
the porous matrix, while s2 is the relaxation time depending
on viscoelasticity.

2.2. Problem formulation

The problem of free convection in a horizontal layer of a
porous medium uniformly heated from below was studied
many years ago [6,7]. The departure from equilibrium is
governed by the conservation equations of mass, momen-
tum and energy in the Oberbeck–Boussinesq approxima-
tion, and assuming local thermal equilibrium between the
fluid and the porous medium:
r � v ¼ 0

1þ s1

o

ot

� �
v ¼ �C

g
1þ s2

o

ot

� �
ðrP � qgÞ

oT
ot
þ Cðv � rÞT ¼ ar2T

8>>>>><
>>>>>:

ð6Þ

with

q ¼ q0½1� bðT � T 0Þ� ð7Þ

s1 ¼
nq0C

g
ð8Þ

In Eqs. (6)–(8), T denotes temperature, and b is the isobaric
dilatation coefficient. C is the ratio of the volumetric
specific heat of the fluid to the overall thermal capacity:

C ¼ qc
uqcþ ð1� uÞqM cM

ð9Þ

where c is the specific heat, u is the matrix porosity (ratio
of the volume occupied by the fluid to the total volume),
and the subscript M denotes the thermophysical properties
of the porous matrix. Finally, a represents the ratio of the
overall thermal conductivity to the overall heat capacity:

a ¼ uk þ ð1� uÞkM

uqcþ ð1� uÞqM cM
ð10Þ

where k indicates the thermal conductivity of the fluid.
In a two-dimensional layer of infinite length and thick-

ness h, the problem is completed by the following boundary
conditions for the velocity:

vðx; 0Þ ¼ 0

vðx; hÞ ¼ 0

�
8t ð11Þ

and for the temperature field:

T ðx; 0Þ ¼ T 0 þ dT

T ðx; hÞ ¼ T 0

�
8t ð12Þ

Using a standard notation, [4,5] the temperature distribu-
tion inside the layer can be written as

T ðx; y; tÞ ¼ T 0 þ dT 1� y
h

� �
þ hðx; y; tÞ ð13Þ

where h(x,y, t) represents the deviation from the linear tem-
perature distribution obtained in case of simple conductive
heat transfer in the layer.

In a stream function formulation, conservation of mass
given by the first of Eq. (6) is automatically satisfied, and
the linearized problem for temperature and velocity pertur-
bations reduces to

s1

o

ot
þ 1

� �
r2W ¼ Cbgq0

g
s2

o

ot
þ 1

� �
oh
ox

ð14Þ

oh
ot
þ C

oW
oy

oh
ox
� oW

ox
oh
oy
� dT

h
oW
ox

� 	
¼ ar2h ð15Þ

with the following boundary conditions:
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oW
ox

����
y¼0

¼ oW
ox

����
y¼h

¼ 0 ð16Þ

oW
oy

����
y¼0

¼ oW
oy

����
y¼h

¼ 0 ð17Þ

hðx; 0Þ ¼ hðx; hÞ ¼ 0 ð18Þ

The problem can be conveniently put into a dimensionless
form rescaling lengths by h, time by h2/a, and temperature
by dT. Consequently, Eqs. (14) and (15) become:

ŝ1

o

ot
þ 1

� �
r2W ¼ R ŝ2

o

ot
þ 1

� �
oh
ox

ð19Þ

oh
ot
þ C

oW
oy

oh
ox
� oW

ox
oh
oy
� oW

ox

� 	
¼ r2h ð20Þ

The dimensionless group R is the so-called Rayleigh–Darcy
number, defined as

R ¼ Cbgq0hdT
ga

ð21Þ

while ŝ1 and ŝ2 indicate the dimensionless retardation and
relaxation time, respectively.

2.3. Model reduction

The standard techniques to investigate the departure
from equilibrium of a physical system described by partial
differential equations are based on perturbation analysis.
An alternative approach consists in studying the stability
of the associated dynamical system. The simplest way to
reduce a system of partial differential equations to a low
order system of ordinary differential equations is to assume
that the state of the system can be represented by a finite
linear combination of basis functions, or mode shapes, at
every instant of time. The coefficient of each basis element
in the linear combination is then described by an ordinary
differential equation. The key problem of this procedure
(which is but a Galerkin projection in the space of eigen-
functions) is choosing a basis that will have the lowest
number of elements and yet reproduce the system dynamics
accurately. Following Saltzman [16] and Lorenz [17], one
can replace the perturbations W and h with a truncated
series of sinusoidal eigenfunctions [19]:

W ¼
ffiffiffi
2
p
ð1þ a2Þ
aC

X ðtÞ sinðpaxÞ sinðpyÞ ð22Þ

h ¼ R�

pR

ffiffiffi
2
p

Y ðtÞ cosðpaxÞ sinðpyÞ � ZðtÞ sinð2pyÞ
h i

ð23Þ

where time dependence is included in the variables X, Y

and Z, and a is a dimensionless wavenumber. The dimen-
sionless number R* = p2(1 + a2)2/a2 is the critical value of
the Rayleigh number obtained for Newtonian fluids.

While sinusoids correctly account for the eigenfunction
dependence on the homogeneous directions [24], this choice
is only an approximation in the non-homogeneous, y-
direction.
Substitution of Eqs. (22) and (23) into Eqs. (19) and (20)
yields the following system of nonlinear ordinary differen-
tial equations:

_X ¼ �2C
D2

D1

XZ � 1� rCD2

D1

X þ Cð1� D2Þ
D1

Y

_Y ¼ �2XZ þ rX � Y

_Z ¼ XY � bZ

ð24Þ

where time has been further rescaled by p2(1 + a2) and

D1 ¼ ŝ1p
2ð1þ a2Þ ð25Þ

D2 ¼ ŝ2p
2ð1þ a2Þ ð26Þ

b ¼ 4

1þ a2
ð27Þ

r ¼ R
R�

ð28Þ

The system given by Eqs. (24) is similar to the well-known
Lorenz equations [17], the only differences being in the first
equation, which has an additional nonlinear term and dif-
ferent coefficients. Like in Lorenz equations, the variable X

can be interpreted as the rate of convective overturning,
while the variables Y and Z measure the horizontal and
the vertical temperature variations, respectively. In spite
of their apparent simplicity, these nonlinear dynamical sys-
tems are extremely complex, and represent an almost
unlimited source of discussion topics for mathematicians
[25]. In particular, their most fascinating feature is that
when the coefficients of the state variables lay within cer-
tain ranges of values, the trajectory of the system in the
phase space remains confined inside a finite volume with-
out describing a periodic or quasi-periodic orbit, creating
a geometric object which is known as strange attractor.
For the Lorenz system, this chaotic behavior can be eas-
ily obtained by tuning the value of the Rayleigh number
[25].

However, when these systems are generated as simplified
mathematical models of physical phenomena, they almost
never give a realistic, quantitative description of physical
systems far from equilibrium, and therefore strange attrac-
tors should be considered at most from a merely qualitative
standpoint. Here, the study of Eq. (24) is limited to what is
necessary to understand the conditions of stability and the
onset of convection in our physical system.
3. Stability

3.1. Critical points

The critical (or equilibrium) points correspond to the
steady-state solutions of the dynamical system _X ¼ fðXÞ
defined in Eq. (24), from which they are obtained by setting
time derivatives equal to zero. Setting X = {X;Y;Z}, these
solutions are



Table 1
Parameter combinations resulting into steady-state, stable solutions of
Eq. (17)

Parameter Number of asymptotically
stable solutions

J0 J1 J2

<1/C >0 >0 1 for r < J0

0 for J0 < r < 1/C
2 for r > 1/C

<1/C >0 <0
<1/C <0 >0 1 for r < J0

<1/C <0 <0 0 for r > J0

>1/C >0 >0 1 for r < 1/C
2 for r > 1/C

>1/C >0 <0 1 for r < 1/C
0 for r > 1/C

>1/C <0 >0 Impossible
>1/C <0 <0
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X1 ¼ 0; 0; 0f g ð29Þ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

rC � 1ð Þ
q

; 1
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

rC � 1ð Þ
q

; 1
2C rC � 1ð Þ

n o
ð30Þ

X3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

rC � 1ð Þ
q

; � 1
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

rC � 1ð Þ
q

; 1
2C rC � 1ð Þ

n o
ð31Þ

The two symmetric equilibrium points given by Eqs. (30)
and (31) are real only if r < 1/C, that is

R P
p2ð1þ a2Þ2

Ca2
ð32Þ

This threshold is independent of all relaxation parameters
and, for C = 1, corresponds to the well-known bifurcation
of the solution obtained for Newtonian fluids.

It must be remarked that these are critical points of the
reduced-order mathematical model described by Eq. (24),
and therefore they might not represent adequately their
counterparts in the physical system. In particular, the equi-
librium point X1 does correspond both qualitatively and
quantitatively to its counterpart (that is, the situation for
which the fluid is motionless and heat transfer through
the porous layer is purely conductive), whereas X2 and
X3 represent two symmetric situations of steady-state con-
vection only from a qualitative standpoint, and nothing
can be said about their quantitative agreement with the
physical system.

3.2. Linearized system around equilibria

In order to investigate the stability of critical points, one
can linearize the dynamical system _X ¼ fðXÞ in the neigh-
borhood of each of them, by taking the Jacobian of the
vectorial function f(X), and evaluating it for X = X1,
X = X2, X = X3, respectively:

of

oX
¼

�2C D2

D1
Z � 1�rCD2

D1

Cð1�D2Þ
D1

�2C D2

D1
X

�2Z þ r �1 �2X

Y X �b

0
B@

1
CA ð33Þ

Without entering the details of stability theory, one can
simply state that the system is asymptotically stable in
the neighborhood of a given equilibrium point if and only
if all the eigenvalues of the corresponding Jacobian have a
negative real part, whereas if there is at least one eigenvalue
with a positive real part the system is unstable.

The characteristic equation obtained for X = X1 is

ðkþ bÞ k2 þ D1 þ 1� rCD2

D1

kþ 1� rC
D1

� �
¼ 0 ð34Þ

the character of the roots of Eq. (34) can be determined
thanks to Hurwitz’s stability criterion, which states that
Eq. (34) has three roots with negative real part if and only if:

r < min J 0;
1

C

� �
ð35Þ

where J0 is a function of both characteristic times and of
the dimensionless heat capacity:
J 0 ¼
1þ D1

CD2

¼ 1þ p2ð1þ a2Þŝ1

Cp2ð1þ a2Þŝ2

ð36Þ

The smallest critical value of the Rayleigh–Darcy number
for the onset of convection is obtained by minimizing the
stability condition with respect to a. In particular, if
J0 > 1 one finds ac = 1, which gives Rc = 4p2/C, whereas
if J0 < 1 minimization of Eq. (36) yields a2

c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=p2ŝ1

p
and

Rc ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=p2ŝ1

p
1þ p2ŝ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=p2ŝ1

p
Þ

h i
Cŝ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=p2ŝ1

p ð37Þ

The solutions X = X2 and X = X3 lead to the same charac-
teristic equation:

k3 þ 1

D1

þ bþ 1� D2

D1

� �
k2

þ b
1

D1

þ rC þ D2

D1

ðrC � 2Þ
� 	

kþ 2bðrC � 1Þ
D1

¼ 0 ð38Þ

Applying Hurwitz’s criterion again, one finds that these
equilibrium points are asymptotically stable if and only if
the following inequalities are satisfied simultaneously:

J 1 ¼ 1þ ð1þ bÞD1 � D2 > 0 ð39Þ

J 2 ¼ rC½J 1ðD1 þ D2Þ � 2D1� þ J 1ð1� 2D2Þ þ 2D1 > 0 ð40Þ

The analysis of Eqs. (35), (39) and (40) allows one to deter-
mine the number and the conditions for the existence of
steady-state, asymptotically stable solutions to Eqs. (24).
Table 1 summarizes all possible combinations of the
parameters J0, J1 and J2, and the corresponding stable
solutions of the system: the condition J0 > 1 is not compat-
ible with the condition J1 < 0, so that this combination is
not allowed.



Fig. 2. Neutral stability curves showing the critical Rayleigh–Darcy
number as a function of wavenumber, a, and their dependence on (a)
retardation time and (b) relaxation time.
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3.3. Parametric effects

Although the system stability around critical points is
fully characterized by Eqs. (34) and (37), some further
analysis is required to unfold the role played by the differ-
ent physical parameters involved in these equations, which
are the dimensionless heat capacity, C, and the retardation
and relaxation parameters, D1 and D2. In particular, stabil-
ity of the critical point X = X1 is of special interest, because
it determines the onset of convection.

Eqs. (35), (36) and (40) show that the dimensionless heat
capacity has a destabilizing effect on the system, that is,
transitions occur at smaller Rayleigh–Darcy numbers when
C is large. This can be understood qualitatively by recalling
how C has been defined in Eq. (9), and the hypothesis of
thermal equilibrium between the fluid and the porous
matrix, which is justified because flows through porous
media are usually very slow. Small values of C mean that
the heat capacity of the porous matrix is very large: thus,
the matrix cools down the fluid by absorbing its thermal
energy, and leaves no energy available to allow escaping
from equilibrium. On the contrary, if C is large all thermal
energy will stay confined in the fluid, facilitating the onset
of unstable motions. To avoid unnecessary complications,
in the rest of the paragraph the effects of other parameters
will be studied in the case C = 1 without loss of generality.

The role of retardation and relaxation parameters is
somewhat more complicated, and needs a more detailed
explanation. For Newtonian fluids the instability is known
to occur for r = 1, whereas for viscoelastic fluids, according
to Eq. (35), this is no longer true when D2 � D1 > 1, and
the critical value becomes smaller. In terms of physical
quantities this means that, in a certain range of parameters
D1 and D2, that is, of the retardation time ŝ1 and the relax-
ation time ŝ2, the critical Rayleigh–Darcy number for a vis-
coelastic fluid is smaller than that for a Newtonian fluid.
Fig. 2 shows the neutral stability curves as a function of
the wavenumber a, for different values of the characteristic
times satisfying the above condition, and compares them
with the curve obtained for a Newtonian fluid, which is
obtained by setting r = 1. The minimum value of the Ray-
leigh–Darcy number on each curve marks the onset of
instability, and for the Newtonian case one finds again
a = 1 and R = 4p2. Critical values of r for the onset of con-
vection in a quiescent viscoelastic fluid (Eq. 35) are plotted
in Fig. 3, with respect to parameters D2 and D1.

The qualitative behavior of the system in the neighbor-
hood of critical points can be obtained by studying the roots
of the corresponding characteristic equations. In particular,
for the equilibrium X = X1 one finds three solutions:

k1;2 ¼
1

2D1

�
rD2 �D1 � 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2D2

2 � 2rD1D2� 2rD2 þD2
1 � 2D1þ 1þ 4rD1

q �
k3 ¼�b

ð41Þ
Since k3 is always negative, the corresponding eigenvector
represents a stable manifold of the phase space, linearized
around X = X1: points of the phase space belonging to this
manifold converge to the equilibrium point, the rate of
convergence being given by exp(k3). On the contrary, solu-
tions k1 and k2 lead to different behaviors according to the
values of parameters.

The loci of roots k1 and k2 are plotted on the complex
plane as a function of r in Figs. 4 and 5, for D2 � D1 < 1
and D2 � D1 > 1, respectively. In the former case, eigen-
values can be either negative or positive, but are always
on the real axis: thus, their eigenvectors are tangent to a
stable manifold (k < 0) or to an unstable one (k > 0). In
particular, when both eigenvalues are negative the critical
point X = X1 is a stable sink, and when the largest one
becomes positive it changes to a saddle point, with two
stable and one unstable manifolds.



Fig. 3. Critical Rayleigh–Darcy number in the domain of the retardation parameter, D1, and the relaxation parameter, D2.

Fig. 4. Position on the complex plane of the eigenvalues k2 and k3 of the
linearized system around the equilibrium point X1 (Eq. 34), as a function
of parameter r (root locus). D1 = p2, D2 = p2/2, 0 < r< 1.25.

Fig. 5. Position on the complex plane of the eigenvalues k2 and k3 of the
linearized system around the equilibrium point X1 (Eq. 34), as a function
of parameter r (root locus). D1 = p2/2, D2 = p2, 0 < r < 1.25.
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If D2 � D1 > 1, Eq. (34) yields a pair of complex conju-
gate eigenvalues for:

1þ D1 � 2 D1

D2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD2 � D1ÞðD2 � 1Þ

p
D2

< r

<
1þ D1 � 2 D1

D2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD2 � D1ÞðD2 � 1Þ

p
D2

ð42Þ

as shown in Fig. 5. In this case, the critical point is a clas-
sified as focus, and trajectories in phase space follow a spi-
raling path, converging towards the focus if it is stable (that
is, if the eigenvalues have negative real part) or diverging if
it is unstable. The qualitative topology of the manifold gen-
erated by k1 and k2, is described schematically in Fig. 6 for
values of r representative of the different cases.
4. Departure from equilibrium

4.1. Steady-state convection

The behavior of the system when the Rayleigh–Darcy
number grows beyond the critical value, and convective
motion of the fluid starts, is of special interest for applica-
tions. In particular, one can calculate how much the heat
flux through the porous layer increases with respect to



Fig. 6. Qualitative behavior of the system in the neighborhood of the
equilibrium point (X = 0; Y = 0; Z = 0), on the manifold of phase space
defined by the eigenvectors of k2 and k3, for different values of parameter r.
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the case of pure conduction, which is given by Nusselt’s
number. To study the departure from equilibrium, one
should integrate Eq. (24) with respect to time with an initial
condition infinitesimally close to the critical point X = X1,
and follow the evolution of the system in the phase space.
It must be remarked once more that Eq. (24) is a truncated
series expansion representing a drastic simplification of the
physical system: thus, it adequately describes states where
the physical variables (e.g. velocity) are small, but can give
considerable errors as variables become larger.

The simplest case of departure from equilibrium occurs
when r > 1/C. In fact, if this condition is satisfied, the crit-
ical points X2 and X3 are real: therefore, the system will
evolve until it reaches a new steady-state condition defined
by either Eq. (30) or Eq. (31). An example of the trajectory
described by the system in the phase space is illustrated in
Fig. 7.

The dimensionless heat transfer coefficient, or Nusselt
number, can be obtained from an energy balance:

Nu
dT
h
¼ �oT

oy

����
y¼0

ð43Þ
Fig. 7. Trajectory of the system in phase space, when a small perturbation
around the equilibrium point (X = 0; Y = 0; Z = 0) is applied, and r > 1:
the system converges to one of the equilibrium points defined by Eq. (30)
or (31). Eq. (24) was solved numerically (Adams’ scheme) for
0 < t* < 1000, r = 50, D1 = p2, and D2 = p2/2, where t* = at/p2h2(1 + a2),
with initial condition (X = 0.1; Y = 0.1; Z = 0.1).
that is

Nu ¼ 1� h
dT

oh
oy

����
y¼0

ð44Þ

recalling Eq. (23) yields:

Nu ¼ 1� 1

r

ffiffiffi
2
p

Y ðtÞ cosðpaxÞ � 2ZðtÞ
h i

ð45Þ

The oscillating term in Eq. (45) can be deleted by averaging
over a finite number of periods, so that substituting for Z

the value by Eq. (30) or (31) gives:

Nu ¼ 1þ r � 1

r
ð46Þ

where C = 1 for simplicity.
Of course, one cannot expect this result to be accurate for

large values of r, because it has been drawn from the dras-
tically simplified model given by Eq. (24). Nevertheless, Eq.
(46) should be sufficiently precise around the critical value
of the Rayleigh–Darcy number, that is, when the system
is not too far from the equilibrium point X = X1, and tem-
perature and velocity fluctuations are small. Expanding the
term (r � 1)/r into Taylor’s series around r = 1 yields:

Nu ffi 1þ ðr � 1Þb1� ðr � 1Þ þ ðr � 1Þ2 � ðr � 1Þ3 þ � � �c
ð47Þ

and for r � 1 one obtains:

Nu 	 r ð48Þ

This relation suggests a linear dependence of Nusselt’s
number on the Rayleigh–Darcy number, as it has been
found for Newtonian fluids, in the same limit r � 1 [26].
A similar result can be obtained with the method of ampli-
tude expansion [14] which, however, is tremendously more
tedious than the present approach.

4.2. Stable orbit

The picture becomes more complicate when J0 < 1/C,
and r > J0. In this case, the critical point X = X1 is unsta-
ble, but the system cannot converge to another equilibrium
point because X2 and X3 are not real. As a matter of fact,
numerical simulations carried out for this range of param-
eters indicate the existence of a stable orbit that attract all
trajectories leaving point X = X1 when the system is given a
small perturbation, as shown in the example of Fig. 8.
Finding stable orbits of a given dynamical system and their
location in the phase space is a non-trivial task even for
experienced mathematicians. In this particular case,
though, simple geometrical considerations allow one find-
ing the orbit equations.

First of all, one can observe that by definition a stable
orbit must be a periodic solution of Eq. (24), with period
R = 2p/x, where x is the imaginary part of the complex
conjugate root pair of Eq. (34). Moreover, the qualitative
shapes of the three-dimensional loop projected on the coor-



Fig. 8. Trajectory of the system in phase space, when a small perturbation around the equilibrium point (X = 0; Y = 0; Z = 0) is applied, and J0 < r < 1.
In this case the system converges to a limit cycle, which is shown (a) in XYZ space, (b) in XY plane, (c) in XZ plane, (d) in YZ plane. Eq. (24) was
solved numerically (Adams’ scheme) for 0 < t* < 1000, r = 0.8, D1 = p2/2, and D2 = p2, where t* = at/p2h2(1 + a2), with initial condition (X = 0.1;
Y = 0.1; Z = 0.1).
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dinate planes, which are shown in Fig. 8b–d, belong to the
well-known family of Bowditch–Lissajous curves [27],
which have the general parametric equations:

x ¼ A sinðnt þ 1Þ
y ¼ B sinðtÞ

ð49Þ

The combination of these three curves provides unique
values for pulsation and phase shift, so that one obtains
the following three-dimensional orbit [28]:

X ¼ A1 sin xt þ p
8

� �
Y ¼ A2 sinðxtÞ

Z ¼ A3 sin 2xt þ p
2

� � ð50Þ

where A1, A2 and A3 are unknown parameters, which can
be obtained by introducing Eq. (50) into Eq. (24) and
setting again C = 1.
The Nusselt number is given again by Eq. (45), so that
after space averaging the only relevant variable is Z:

Nu ¼ 1þ 2

r
Z ¼ 1þ 2

r
A3 sin 2xt þ p

2

� �
ð51Þ

where

A3 sin 2xt þ p
2

� �

¼ 1

2
r �

D1xþ tan xt þ p
8

� � �
½xþ tanðxtÞ�

tan xt þ p
8

� 
½D2xþ tanðxtÞ�

( )
ð52Þ

Unlike in the previous case, Z is a function of time, so that
the average value over a period must be considered in order
to eliminate time dependence. Following the same procedure
described above, one can expand the right hand side of Eq.
(51) into Taylor’s series around the critical value r = r0,
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where r0 = (1 + D1)/D2 marks the onset of convection for
this range of parameters. The result, in the limit r � r0, is

Nu ffi 1þ r0 � X
r0

þ X
r2

0

ðr � r0Þ ð53Þ

where

X ¼ x
2p

Z 2p
x

0

D1xþ tan xt þ p
8

� � �
½xþ tanðxtÞ�

tan xt þ p
8

� 
½D2xþ tanðxtÞ�

dt ð54Þ

Eq. (53) suggests that in this case the Nusselt number at the
onset of convection is still a straight line when plotted as a
function of the Rayleigh–Darcy number, but both the slope
and the intercept now depend on the retardation and relax-
ation parameters.

5. Conclusions

The onset of buoyancy-driven motion in a horizontal
porous layer saturated with a relaxational fluid was inves-
tigated theoretically by means of dynamical system theory.
The general problem of buoyancy-driven convection in
porous media has a wide variety of engineering applica-
tions, such as geothermal reservoirs, agricultural product
storage systems, packed-bed catalytic reactors, the pollu-
tant transport in underground and the heat removal of
nuclear power plants. Specific examples in which the fluid
viscoelasticity should be taken into account include geo-
physical flows, oil reservoirs, and chemical reactors.

The physical system was described with a reduced-order
model, which was generated by expanding temperature and
velocity fluctuations into a truncated series of eigenfunc-
tions. The approach is identical to that used by Lorenz to
obtain a reduced-order model of atmospheric convection,
and shows the unpredictability of deterministic systems.

According to the values of the retardation and relaxa-
tion parameters, two different behaviors can be observed.
In one case there is a supercritical instability leading to
steady-state convection, similar to what has been found
for Newtonian fluids, which does not depend on character-
istic times. Alternatively, the system trajectories in the
phase space collapse onto a limit cycle, so that convective
motion exhibits periodic oscillations; the critical Ray-
leigh–Darcy number for the onset of convection can be
much smaller than in the previous case.

Although the simplifications on which the present
approach is based are too drastic to allow a quantitative
investigation of the physical system far from equilibrium,
the reduced-order convection model gives a correct qualita-
tive description of the system behavior. In particular, with
simple geometrical considerations and elementary calculus,
an estimation of Nusselt’s number at the onset of convec-
tive motions is possible.
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